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Strength estimation for silicon nitride 
specimens with a spherical void 
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Silicon nitride specimens embedded with a single spherical void were prepared for a flexural 
strength test. The measured flexural strengths of the specimens were compared with theoretically 
estimated strengths. Estimation of the strengths was done using a Gibbs free-energy criterion. The 
energy was calculated by Eshelby's equivalent inclusion method for a specimen with an 
embedded void. Good correspondence was obtained between the experimental and the estimated 
fracture loads. A deviation of the estimated strength from the experimental value was observed for 
voids whose diameters were comparable with intrinsic defects. 

1. In troduc t ion  
Fracture origins in ceramics are usually either intrin- 
sic defects or machined flaws. The strength of ceramics 
is often determined by intrinsic defects such as inclu- 
sions, voids or elongated grains [1], and it has been 
int.eresting to study the mechanisms of fracture which 
occurs from these defects. The fracture of brittle ma- 
terials has generally been discussed in terms of the 
propagation of a crack already existing in the mater- 
ials. 

Several studies have been performed to evaluate the 
strength of silicon nitride containing artificial voids. 
Munz et  al. [2] reported that a peripheral crack model 
can predict that the strength decreases with increasing 
flaw size for both reaction-bonded and sintered silicon 
nitride, if an appropriate length of annular crack is 
chosen. Okada and Hirosaki [3] also discussed cir- 
cumferential cracking with artificially introduced 
voids and Heinrich and Munz [4] studied the strength 
of silicon nitride specimens with artificially introduced 
spherical surface pores. The same authors [5] also 
reported that the circumferential crack extension of 
the hemispherical pits should have occurred during 
loading from one grain diameter to approximately ten 
grain diameters, if an explanation based on fracture 
mechanics is possible. Analyses of the stress intensity 
factors have also been performed for a peripheral 
crack around the equator of spherical voids [6-12], 
and hemispherical pits [6, 7]. 

Here, fracture has been investigated from a different 
view point which does not need a circumferential 
crack. We consider that fracture occurs when a mater- 
ial becomes energetically unstable. To simplify the 
problem, a ceramic specimen which contains one arti- 
ficial void was studied for a fracture condition of 
brittle materials. In the present study, the flexural 
strength of silicon nitride was considered. 

The effect of fracture conditions is discussed on the 
unstable energy criterion, and procedures for calcu- 
lation of the energy and an estimation of the strength 
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are explained, as is the experimental procedure of the 
flexural test and the results. The fracture loads were 
calculated and compared with the experimental re- 
sults. In the Appendix, the disturbed strain energy 
caused by a void is formulated micromechanically, 
using Eshelby's equivalent inclusion method [13]. 

2. Strength estimation procedure 
2.1. Consideration of fracture conditions 
The purpose of the present work is to estimate the 
strength by an energy criterion. We consider that 
fracture of ceramics occurs when a specimen contain- 
ing a void becomes energetically unstable. When this 
unstable condition is satisfied, fracture occurs and 
cracks may initiate somewhere around a void and 
propagate in some direction. The shapes of the cracks 
and the propagation directions are dependent on the 
microstructures of the material and the applied stress 
states around the void. How these cracks are gener- 
ated or propagated is not discussed here. We consider 
that crack initiation itself is the fracture. 

This criterion is somewhat different from Griffith's 
energy theory of fracture mechanics. Griffith's theory 
states that a crack growth can occur if the energy 
required to form an additional crack size can just be 
delivered by the system under a constant load [14]. 
The difference between the previous works [2-5] on 
the fracture mechanics and the present work is that 
the former are based on a crack's existence and its 
propagation. The latter deals with the unstable energy 
condition for crack initiation. 

2.2. Def ini t ion of f r ac tu re  load 
The Gibbs free energy describes an energy state of 
matter which is subjected to an external force. Under 
constant load, the relationship between the Gibbs free 
energy of a specimen and the void diameter is as 
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Figure 1 Relationship between void diameter and Gibbs free en- 
ergy. 

shown schematically in Fig. 1. The energy has a max- 
imum at some void diameter; a critical void diameter 

The specimen is considered to be unstable beyond 
that point, because the energy is lower for a larger 
void diameter. A specimen with a void of diameter, 
dl is stable, but one with a void of diameter, d2, is 
unstable. 

As shown in Fig. 2, when the applied load, P, is 
increased from P1 to P2, the critical diameter is shifted 
to a smaller value. Eventually, the diameter becomes 
equal to the diameter of an embedded void, d*. The 
corresponding load is defined as the fracture load. 

2.3. Gibbs free energy 
The Gibbs free energy of a specimen containing a void 
can be expressed by [15] 

F = F s + F E + F l (1) 

where F s is the total surface energy of a specimen and 
presented as 

F s = F sv + F ss = 7S + 7"S* (2) 

where F sv and F ss are surface energies of a void and 
the specimen, respectively, y and y* are the surface 
energies per unit area for the void and the specimen, 
respectively. S and S* are surface areas of the void and 
the specimen, respectively. 

F E is the elastic strain energy of a specimen with no 
void, subjected to an external force. This is written as 

lf~ AA f X i u ,  dS (3) F E  = ~ ~ij ui,~ dx  - -  Ol 

A A U A are the stress, the total strain and where c~ij, ui, j and 
the displacement, respectively, caused by the external 
force. Xi is the surface traction (external force). D re- 
presents the domain of the specimen with no void. I D [ 
means the surface of D. 
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Figure 2 Fracture-load definition. 

F 1 is the elastic stain energy of the specimen by the 
interaction between a void and an external force 

lfo A * F I = - ~ OktektdX (4) 

where • represents the domain of the void and e~ is an 
eigenstrain due to the void [16]. This energy comes 
from the local strain field, disturbed around the void. 

2.4. Fracture-load estimations 
Let us consider two specimens; a specimen with 
a given void and another specimen with a void whose 
diameter is slightly larger than the given diameter. 
When the Gibbs free energy of the latter specimen is 
smaller than that of the former specimen, the specimen 
of the given diameter is in the unstable region. There- 
fore, to estimate the fracture load, only the difference 
of the Gibbs free energies for different void diameters 
is required. The difference of the free energies is deter- 
mined by only the surface energy of the void, F sv, and 
the interaction energy, F ~, because other terms are 
independent of the void diameter. Namely, the frac- 
ture condition is determined by the balance between 
the surface energy of the void and the interaction 
energy of a specimen. 

The surface energy, contributing to the difference of 
the free energy, is the first term of Equation 2. The 
fracture surface energy per unit area, y, is obtained 
using the equation [17] 

7 = KZc( 1 - v2)/2E (5) 

where K~c is the fracture toughness. The K~c of silicon 
nitride is 6.0 MPam 1/z as is obtained by the single- 
edge precracked-beam (SEPB) method [18]. E is the 
Young's modulus and v is Poisson's ratio. 



The elastic strain energy from the interaction be- 
tween the external force and a void, F = (Equation 4), is 
micromechanically calculated, using Eshelby's equiva- 
lent inclusion model. The derivations are shown in the 
Appendix. The calculation was performed on the basis 
of the following three assumptions. (1) The silicon 
nitride matrix is an isotropic and homogeneous ma- 
terial, because the grain size is small enough. (2) The 
void is not so close to the surface of a specimen that 
the disturbed strain J[s not affected by the surface. (3) 
There is no interaction between the artificially embed- 
ded void and intrinsic flaws. 

In the practical calculation of the fracture load, we 
compared the Gibbs free energies of two specimens 
whose void diameters are al = a2 = a3 = a and 
al = a2 = a3 = 1.01a. The comparison starts at a cer- 
tain given load. The calculation is carried out step- 
by-step by increasing the load until the Gibbs free 
energy of the latter specimen becomes less than that of 
the former specimen. The load which satisfies the 
condition is the fracture load of a specimen. Estima- 
tions were also made with other conditions, such as 
a spherical enlargement of 1.02 or ellipsoidal enlarge- 
ment. In either way, we obtained essentially the same 
results. 

3. Experimental procedure 
Mechanical properties of sintered silicon nitride are 
lis(ed in Table 1. The material was prepared in the 
following manner. The silicon nitride powders were 
granulated and pressed in a die with a single spherical 
organic particle. The particle was put into a central 
area close to the tensile surface of the specimen. We 
used four grades of particle diameter, with fifty speci- 
mens being made for each grade. 

The four-point bend test was carried out by JIS 
R 1601. The cross-section of the specimen was 3 mm in 
height and 4 mm in width. The inner and outer spans 
were l0 and 30 mm, respectively. The crosshead speed 
was 0.5 mm min - 1. 

Specimens fractured from the introduced void were 
used to determine strength. The diameter of the void 
and the depth from the tensile surface were measured 
from scanning electron micrographs. 

electron micrographs of typical voids are shown in 
Fig. 3. The voids possess good spherical shape. 

The strength of the specimen varies because the 
diameter and the depth of voids are scattered. The 
nominal flexural strength is plotted as a function of 
the void diameter in Fig. 4. As the void diameter 
increases, the flexural strength decreases. The nominal 
flexural strength is also plotted as a function of void 
depth (the distance from the void surface to the speci- 
men tensile surface) in Fig. 5. As the void depth de- 
creases, the flexural strength decreases. This behaviour 
was qualitatively expected. 

TA B L E I I Flexural strength test results 

Void Number  of Average Average Average 
grade specimens void void nominal 

diameter depth strength 
(gin) 0tm) (MPa) 

1 38 153 (19.1)" 231 (30.2) a 650 (42.6)" 
2 47 241 (19.7) 287 (36.6) 615 (36.6) 
3 47 312 (23.8) 319 (46.0) 572 (41.0) 
4 37 470 (33.7) 390 (49.4) 523 (40.8) 

a Standard deviation given in parentheses. 

4. Resu l t s  
The results are summarized in Table II. Average dia- 
meters of the four grades of voids were 153, 241,312 
and 470/am, respectively. Several specimens of the 
153 tam voids fractured from origins other than the 
artificially introduced voids. Several specimens of the 
470 tam voids were discarded, because those voids 
appeared on the surface after machining. Scanning 

T A B LE ! Mechanical properties of silicon nitride 

Bulk density 
Vicker's hardness 
Young's modulus 
Poisson's ratio 
Four-point bend strength 

3.2 g /cm-  3 
14.4 GPa  
294 GPa  
0.28 
735 MPa  Figure 3 Artificially embedded voids. Average diameter: (a) 153 p.m, 

(b) 241 /am, (c) 312 gin, (d) 470 gm. 
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Figure 5 Nominal flexural strength versus void depth. For key, see 
Fig. 4 

5. Comparison of experimental results 
and estimation from the fracture 
model 

The estimated fracture loads from the Gibbs free en- 
ergy versus the experimentally measured values are 
plotted in Fig. 6. The dashed line shows the averaged 
fracture load of the specimens with no artificial void. 
The intrinsic fracture load was approximately 900 N. 

For the 470, 312, and 241 lam voids, good agree- 
ment can be observed between the estimated and 
experimental loads. For the 153 lam voids, however, 
the fracture loads were overestimated, compared with 
the experimental ones. The experimental fracture load 
is rather on the line of the intrinsic one. 

The intrinsic fracture origins of this material are 
mainly voids of less than 100 lam according to a pre- 
vious tensile test [197. Specimens with voids of more 
than 241 pm were fractured from the artificially em- 
bedded voids. For specimens with 153 ~tm voids, 20% 
of the specimens fractured from origins other than the 
artificially embedded void (see Table II). This indi- 
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Figure 6 Experimental load versus estimated load. For key, see 
Fig. 4. 



cares a transition of fracture origin occurring from the 
artificially embedded voids to the intrinsic flaws. 

The transition may be explained by an interaction 
mechamism between the artifical flaw and the intrinsic 
flaws in ceramics. Some experimental work by Sakai 
and Miyajima [20] supports the existence of this kind 
of transition. It is also considered that interactions 
between intrinsic flaws play an important role in the 
fracture of ceramics. 

6. C o n c l u s i o n  
The four-point flexural strengths of silicon nitrides 
containing a spherical void were measured. The data 
were compared with values estimated theoretically 
from an unstable energy criterion. The Gibbs free 
energy was micromechanically calculated using 
Eshelby's equivalent inclusion technique. Good agree- 
ment between the experimental and estimated values 
was obtained. 

The discrepancy between the estimated and experi- 
mental loads for voids of small diameter indicates that 
interaction may occur between intrinsic flaws and an 
artificial void. 

The present unstable energy criterion may provide 
a quantitive approach for further study of the fracture 
mechanism on brittle materials. 
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Appendix. Interaction energy calculation 
Eshelby proposed replacing an inclusion by an ellip- 
soid which has elastic properties identical to those of 
the matrix and fictitious stress-free strains (eigen- 
strains) so that the same stress state of the inclusion is 
reproduced. The disturbed strain around the inclusion 
is then calculated by the following procedure [15]. 

First, we consider an ellipsoidal inclusion, f~, in an 
infinite elastic body, D, as shown in Fig. A1. The 
functional form of the ellipsoid is expressed as 

a5 + a5 + a~3 ~< 1 (a l) 

The total strain, Ui, k(X), generated by the inclusion, is 
expressed by 

Ui,k(X ) =--- --  CjtranGji, tk(X , x')e,,,,,(x )dx (A2) 

where e*,,,(x') is the eigenstrain. C~t,,, and Gii, zg(X, x') 
are the stiffness tensor of the matrix and the second 
derivative of Green's function. Green's function for an 
infinite and isotropic body is written as 

Gji(x - x') = '2;'2i/23 + (3 - 4v)6~i/s (A3) 
16~(1 - v)g 

where 2 i = x l - x l  and x=(21~i) t/2"6ji is the 
Kronecker delta, la and v are the shear modulus and 
Poisson's ratio, respectively. 

For a bending stress state, the eigenstrains are de- 
scribed by a function of a linear combination of the 
variables xl ,  x2 and Xa, and can be written as 

e*m(X) = ePmyp + e.~** (A4) 

where yp = xp/ap. Then Equation A2 can be expressed 
as 

= e.q p ** (A5a) Ui, k(Y) yqS,kmnenm + Sikmnenm 

where 

Se~ffmn = ~ a la2a3Cj lmnapaq  (a~Zl + a ~  + a2~2) 5/2 

x [Nu(~)D-  i(~) dS(~)] (A5b) 

and 

Sik~, = ~ala2aaCj tm,  (a~-~2 + a~Z ~ + a~)3 /2  

x [Nu(~)D- 1(~) dS(~)] (A5c) 
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Figure A1 Eshelby's equivalent inclusion model. 
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where ~i is a unit vector and S represents the surface of 
the unit sphere. Nij and D are the cofactor and the 
determinant of a matrix, K, respectively. The matrix 
elements of K are written as 

Kik(~) = Cijkl{i {l (A6) 

From Equation (A5a) and the relation of stress and 
strain, the stresses inside the replaced inclusion, which 
has elastic moduli identical to those of the matrix and 
the eigenstrains, are given by 

Ost Cstik[Yl r ~P e~k + E~k) - ' ~  t~ ~nm --  

+ Yz(Sikm. e.m -- eZk + 
p3 p 

+ y3(Sikmn enm - -  e3k + E3ik) 

+ (S,km. e.m** -- e** + E,k)] (a7) 

where y~E~ + E~k is the strain in the presence of the 
applied stress. The stresses inside the inclusion, which 
has different elastic moduli from those of the matrix, 
are also given as 

t pl 
(Yst : Cs*tik [ Y 1 (Sikmn e.~ p + E~k) 

p2 
4- y2(Sikmn p e,,~ + E~k) 

p3 p + ys(Slkm, e,m + E3k) 

+ (Sik,~, e** + E~k)] (A8) 

where Cs*~k is the stiffness tensor of the inclusion. 
Finally, 18 and 6 simultaneous equations 

C ,spq p p q stik[ ikmnenm - -  eik q- gqk) = r *  /cPq P �9 .~stik~Oikmn(?.nm + Elk) 
(A9) 

and 

Cstik(Sikmn e,,** - ** * eik + Egk) = C~.k(S.,,,,,,e,.. + E**)  
(A10) 

are obtained by requesting o~ = o~. In the present 
study, the right-hand side terms of Equations A9 and 
A10 are equal to zero, because * Cstik = O. 

The unknown constants of the eigenstrains, e~',. and 
e** (Equation A4), are obtained by solving these 18 
and 6 simultaneous equations. Once these eigenstrains 
have been determined, the interaction energy of Equa- 
tion 4 can be obtained. 
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